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Abstract
We find the large-time asymptotic behaviour for a number of physically
interesting cases of the Becker–Döring equations, allowing both the forward
and the backward rates to depend on cluster size in a power-law fashion. We
consider in detail the constant monomer form of the equations in the special case
where the powers are equal, since the structure of the large-time asymptotic
behaviour is then richest. We then turn to cases in which aggregation and
fragmentation have different exponents, examining both the fragmentation-
and coagulation-dominated cases, again under constant monomer conditions.

PACS numbers: 02.30.Hq, 02.60.−x, 03.65.Sq, 05.45.−a, 61.43.Hv, 68.43.Jr

1. Introduction

Our main aim in this paper is to apply the methods of matched asymptotic expansions to
find the large-time asymptotic behaviour of the Becker–Döring system of ordinary differential
equations in certain cases of physical interest in which the rate coefficients are allowed to
vary with cluster size. This study thus generalizes earlier asymptotic results of the system
with constant rates [7]. In particular, we shall be concerned with forward and backward rate
coefficients given by

ar = αrp and br = βrq (1.1)

respectively, for constant p and q. The exponent p reflects how the rate of coalescence of
monomers with clusters scales with the size of cluster. For compact clusters, p � 1 holds
since the number of collisions is dependent on the surface area of the cluster and not all
collisions lead to the formation of larger clusters; however, p > 1 is possible for fractal
aggregates (see [3] and references therein). The parameter q determines the relative stability
of clusters of different sizes; if q > 0 then larger clusters fragment at a faster rate than smaller,
whereas it is smaller clusters which have the greater fragmentation rate if q < 0. The sign
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of p − q determines the equilibrium (or steady-state) behaviour of the system; if q > p then
large clusters are more likely to fragment than aggregate, corresponding to an undersaturated
solution, whereas q < p corresponds to a supersaturated environment in which large clusters
are more likely to aggregate than fragment.

The Becker–Döring equations have been studied in two closely related forms; first there
is the constant monomer case, as originally proposed by Becker and Döring [2], in which

ċr = Jr−1 − Jr (r � 2) and Jr = arc1cr − br+1cr+1 (1.2)

are solved with c1 a prescribed constant for all t � 0. Secondly, and more recently
[6], the monomer concentration has been allowed to vary in (1.2), with a constant density
condition imposed rather than a prescribed constant monomer concentration. The monomer
concentration then satisfies

ċ1 = −J1 −
∞∑
r=1

Jr . (1.3)

Since a cluster of size r contains r monomers, the total density in the system is the first moment:

� = M1 =
∞∑
r=1

rcr . (1.4)

This quantity is conserved for (1.2), (1.3), at least for p � 1 [1]. Ball et al [1] note that for
certain initial data the system has no solution if p > max(1, q) due to the divergence of the
sum in (1.3). Brilliantov and Kravitsky [3] observed gelation (that is the loss of mass to a
particle of formally infinite size) in numerical simulations of the Becker–Döring equations
when p > 1 and q = 0, but gave no analysis of the phenomenon. We shall include here such
an analysis of the simpler constant monomer case.

The system (1.2), (1.3) is nonlinear, due to the appearance of the product of c1 with cr

in each of the flux functions in (1.2). Viewing r as a spatial variable, equation (1.3) makes
the system nonlocal as well as nonlinear. When considering the large-time asymptotics of the
system, there are, however, situations in which the two problems are almost identical and many
others in which knowledge of the constant monomer problem sheds much light on the harder
constant density case. We accordingly concern ourselves here with the constant monomer
case, (1.1)–(1.2) with c1 constant.

There are two important quantities that we should introduce before the analysis of the
system proceeds. The first is the partition function Qr, which is defined by

arQr = br+1Qr+1 Q1 = 1. (1.5)

It is straightforward to describe the equilibrium solutions of either system in terms of the Qr,
these being the steady-state solutions which satisfy Jr = 0 for all r, given by

cr = Qrc
r
1. (1.6)

In the constant density system, the equilibrium monomer concentration is in many cases
determined by requiring that the solution defined by (1.6) has the same density (1.4) as the
initial data. The other quantity is the function

V =
∞∑
r=1

cr

(
log

(
cr

Qrc
r
1

)
− 1

)
(1.7)

which is a Lyapunov function for the system provided it is bounded below, since dV/dt � 0
follows from (1.2).

In a previous paper [7], we analysed the constant coefficient case, that is p = q = 0.
There, we determined the large-time asymptotics of the constant monomer concentration case
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together with the limit case of the fixed mass system in which the fragmentation rate tends to
zero. The purpose of the current paper is to generalize the constant monomer results to variable
rate coefficients (1.1); unlike the constant coefficient case, there seem in general to be no exact
time-dependent solutions to the variable coefficient system (see section 2.2, however).

Section 2 describes the equilibrium and steady-state solutions which are possible attractors
in the large-time limit; in addition, for a very special choice of the rate coefficients, an exact
solution is derived. For general rate coefficients, the large-r behaviour of the solutions is then
derived using WKBJ methods, in particular. Section 3 concerns the small-time behaviour,
which provides important information regarding the qualitative behaviour in the various (p, q)
parameter regimes. In section 4 we consider the large-time behaviour, starting by analysing
the special case in which the two exponents are equal (p = q), so thatQr = (α/β)r−1/rp, the
parameter θ = αc1/β being crucial to the analysis. The resulting balance between coagulation
and fragmentation produces some phenomena not seen in cases with p �= q . For p = q we find
three subcases: ‘E’ for θ < 1, where the system tends to an equilibrium solution; ‘S’ for θ > 1,
where a steady-state solution is approached and ‘B’ for the borderline case θ = 1 in which more
complicated phenomena occur. Within each of these categories, there are further subcases
depending on the value of the exponent p. The section concludes with brief descriptions of the
cases q > p (section 4.6) and p > q (section 4.7). In the former, fragmentation dominates
coagulation at large aggregation numbers. We refer to this as the fragmentation-dominated case
(‘F’: q > p) and show that, for constant monomer concentration, a well-behaved equilibrium
solution is approached. In section 4.7 we consider the case where the aggregation exponent
exceeds that of fragmentation (‘A’: p > q), so the system can be viewed as being dominated
by aggregation and approaches a steady-state solution. The paper concludes with a discussion
of the results and pointers to future work.

2. Preliminaries

2.1. The partition function and equilibrium solutions

With the choice of rate coefficients (1.1), the partition function is given by

Qr =
(
α

β

)r−1 1

rp(r!)q−p
. (2.1)

This implies that

logQr ∼ (p − q)r log r +

(
q − p + log

α

β

)
r − 1

2
(p + q) log r

+
1

2
(p − q) log 2π − log

α

β
as r → ∞ (2.2)

so for p < q the partition function Qr tends to zero sufficiently fast that the equilibrium
distribution (1.6) has a finite total density for any finite value of c1; if p > q, however, then Qr

diverges rapidly.
In the special case p = q, the partition function has much weaker large-r asymptotics and

the value of the ratio θ = αc1/β determines whether the system converges to equilibrium or
to a steady state (cf [7]). If θ > 1 then the system approaches a steady state solution (i.e.
one with Jr constant and strictly positive) in which, for p > 0, the concentrations cr decay
algebraically with increasing cluster size (see (2.7)). For θ � 1, the system converges to its
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equilibrium solution, which decays exponentially for θ < 1 but has algebraic behaviour when
θ = 1; from (1.6) and (2.1) we have

cr = c1θ
r−1

rp
. (2.3)

Thus it is the case p = q which has the richest asymptotic structure and will be the focus of
most attention in section 4.

If θ > 1 with p = q then the solution (2.3) diverges as r → ∞ and we must instead
consider the more general (one-parameter) family of steady-state solutions

Jr = J cr = c1θ
r−1

rp

(
1 − J (θr − θ)

βc1θr(θ − 1)

)
θ �= 1 (2.4)

Jr = J cr = c1

rp

(
1 − J (r − 1)

βc1

)
θ = 1 (2.5)

where J is the constant mass flux through the system at steady-state. In order to have the
minimal behaviour in cr as r → ∞, we require for θ � 1 that J = 0, as above, and for θ > 1
that

J = c1(αc1 − β) > 0; (2.6)

equation (2.4) then yields the steady-state solution

cr = c1/r
p. (2.7)

This solution coincides with (2.3) in the borderline case θ = 1 and has unbounded mass
when p< 2. Moreover, it does not necessarily provide a uniform description of the t → ∞
asymptotic behaviour; see section 4.3. For the case of general rate coefficients, the steady-state
solution is determined by

cr = Qrc
r
1J

∞∑
k=r

1

akQkc
k+1
1

with J = 1

/ ∞∑
k=1

1

akQkc
k+1
1

. (2.8)

For the rates given by (1.1) with p > q this implies

cr ∼ J

αc1rp
as r → ∞ with J = βc1

/ ∞∑
k=1

1

θk(k!)p−q . (2.9)

More generally, the former reads cr ∼ J/arc1 as r → +∞.

2.2. Exact solutions

The Becker–Döring system with aggregation rate given by ar = αr and no fragmentation can
in certain cases be solved by the use of generating functions, cf Brilliantov and Krapivsky [3],
who derive a closed form solution in the corresponding constant mass case. Introducing

G(z, t) =
∞∑
r=1

cr e−rz (2.10)

in the constant monomer case G satisfies
∂G

∂t
= α

(
c1(1 − e−z)

∂G

∂z
+ c2

1 e−z
)
. (2.11)

The substitution eζ = ez − 1 yields(
1

αc1

∂

∂t
− ∂

∂ζ

) (
G + c1ζ − c1 log(1 + eζ )

) = 0 (2.12)
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from which we find

G(ζ, t) = G0(ζ + αc1t)− c1ζ + c1 log(1 + eζ ) (2.13)

for some G0 determined by the initial conditions. For monodisperse initial data, cr(0) = 0
for all r � 2, G(ζ, 0) = c1/(eζ + 1), we haveG0(x) = c1/(1 + ex) + c1x − c1 log(1 + ex), so

G(z, t) = c1e−αc1t−z(1 − e−z(1 − e−αc1t ))−1 − c1 log(1 − e−z(1 − e−αc1t )). (2.14)

It is then straightforward to find both the moments of the cluster distribution function, for
example

� = − ∂G

∂z

∣∣∣∣
z=0

= c1(2 eαc1t − 1) (2.15)

and the concentrations of clusters of size r, namely

cr(t) = c1

r
(1 − e−αc1 t )r−1(1 + (r − 1) e−αc1t ). (2.16)

In the large-time limit, this asymptotes to

cr ∼ c1

r
for r = O(1)

cr ∼ c1

r
(1 + r e−αc1t ) exp(−r e−αc1t ) for r = O(eαc1t )

cr ∼ c1 e−αc1t (1 − e−αc1t )r for r � eαc1t .

(2.17)

These asymptotic expansions for this integrable case are not, however, generic in systems
with rate coefficients given by (1.1), and we shall instead in the remainder of the paper use
asymptotic techniques to form a rather complete picture of the phenomena exhibited by the
constant monomer Becker–Döring system (1.2). The exponential growth of the density (2.15)
reflects the status of the current case as a critical one.

Some further comments about the special case of no fragmentation are in order. Firstly,
the system (1.2) can then be solved sequentially through successively larger r, so that for (1.1),
if c2(0) = 0, we have that

c2 = c1
(
1 − e−2pαc1 t

)/
2p (2.18)

and so on. Moreover, the total number of particles

M0 =
∞∑
r=1

cr (2.19)

satisfies
dM0

dt
= αc2

1 − J∞. (2.20)

J∞ = 0 holds in the ‘non-gelating’ range p � 1, in which case M0 grows linearly. Finally,
taking p integer (to obviate the need for fractional derivatives) we find that

∂G

∂t
= −(−1)pαc1(1 − e−z)

∂pG

∂zp
+ αc2

1 e−z (2.21)

with the initial boundary value problem for (2.21) being somewhat curious: the result noted
above that (1.2) can be solved sequentially for br ≡ 0 implies that the boundary data is all to
be imposed as z → +∞, where

G ∼ c1 e−z (2.22)
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holds. We also have

J∞(t) = (−1)pαc1 lim
z→0

(
z
∂pG

∂zp

)
(2.23)

which is equivalent to (2.20) and serves to determine J∞ (rather than being a boundary
condition). The fact that (2.21) is a backward heat equation in z > 0 for p = 2 indicates the
delicacy of such partial differential equation formulations.

2.3. WKBJ analysis

2.3.1. Formulation. In the far field, we expect all concentrations to decay to zero. For
suitable (p, q), we now find a leading order representation of the solution in this region using
a version of the WKBJ method appropriate to discrete systems such as (1.2). We take the
rate coefficients to be continuous functions of aggregation size and denote them by a(r), b(r).
Substituting cr(t) ∼ P(r, t)ew(r,t) into (1.2) and naively balancing terms we find that

∂w

∂t
= a(r)c1

(
exp

(
−∂w
∂r

)
− 1

)
+ b(r)

(
exp

(
∂w

∂r

)
− 1

)
(2.24)

with correction terms implying

∂P

∂t
= c1

(
1

2
aP
∂2w

∂r2
− a ∂P

∂r
− P

∂a

∂r

)
exp

(
−∂w
∂r

)

+

(
1

2
bP
∂2w

∂r2
+ b
∂P

∂r
+ P

∂b

∂r

)
exp

(
∂w

∂r

)
. (2.25)

We shall not concern ourselves here with the pre-exponential factor P(r, t); moreover, we
stress that the full balance in (2.24) is not usually appropriate (particularly when p �= q),
with a number of distinct limit cases of it arising below. In most cases only a small subset
of the terms present in (2.24) are present in the leading-order balance, the remaining terms
being vanishingly small in the limit r → ∞, t = O(1) and so are only relevant if higher
order correction terms (for example P) are required. Equation (2.24) is valid for r � 1 with
t = O(1).

2.3.2. Similarity solution for the case q � p. The solution for w which we require to
describe certain aspects of the asymptotic behaviour is of the self-similar form

w(r, t) ∼ t1/(1−p)F (η) η = r/t1/(1−p). (2.26)

For p = q, F(η) is governed by

1

1 − p(F − ηF ′) = αc1η
p(e−F ′ − 1) + βηp(eF

′ − 1) (2.27)

whereas for p > q the b term in (2.24) is negligible as r → ∞, implying

1

1 − p(F − ηF ′) = αc1η
p(e−F ′ − 1). (2.28)

For p < 1, the similarity solution (2.26) pertains as t → ∞ with η = O(1) (see section 4).
Here we need the solution of (2.27) with the fastest decay in the large η limit, whereby we
find that as η → ∞

F ∼ −(1 − p)(η log η − η) + η log(αc1) (2.29)

so that F,F ′ → −∞. The Legendre transform

η = F̂ ′(η̂) η̂ = F ′(η) F + F̂ = ηη̂ (2.30)
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of (2.27) with boundary condition F̂ → −∞ as η̂ → −∞ then yields

F̂ (η̂) = −(1 − p)pp/(1−p)
/{∫ η̂

−∞

eu/p du

[(1 − eu) (αc1 − βeu)]1/p

}p/(1−p)
. (2.31)

The solution F(η) given parametrically in terms of η̂ is therefore

η = p1/(1−p)eη̂/p
/[

(eη̂ − 1)
(
βeη̂ − αc1

)]1/p
{∫ η̂

−∞

eu/p du

[(1 − eu) (αc1 − βeu)]1/p

}1/(1−p)

(2.32)

F = ηη̂ − F̂ (η̂). (2.33)

The solution (2.33) exists only for sufficiently large η, i.e. for η � ηc where

ηc = [(1 − p)(β − αc1)]
1/(1−p) θ < 1 (2.34)

ηc = [(1 − p)(αc1 − β)]1/(1−p) θ > 1 (2.35)

corresponding to the integral in (2.31)–(2.32) blowing up as, respectively, η̂ → (log θ)− and
η̂ → 0−; for θ < 1 we have, with ηc given by (2.34),

p < 1/2 F ∼ log θ ηc + log θ (η − ηc) +O((η − ηc)2) as η → η+
c (2.36)

p = 1/2 F ∼ log θ ηc + log θ (η − ηc) +O

(
(η − ηc)

2

log(η − ηc)
)

as η → η+
c

(2.37)

1/2 < p < 1 F ∼ log θ ηc + log θ (η − ηc) +O
(
(η − ηc)1/(1−p)) as η → η+

c .

(2.38)

In the case θ > 1 the integral in (2.32) diverges in the limit η̂ → 0− and we have

p < 1/2 F ∼ − (αc1 − β)
(αc1 + β)

(1 − 2p)

2(1 − p)
(η − ηc)2
ηc

as η → η+
c (2.39)

p = 1/2 F = O

(
(η − ηc)2

log(η − ηc)

)
as η → η+

c (2.40)

1/2 < p < 1 F = O
(
(η − ηc)1/(1−p)) as η → η+

c (2.41)

where ηc is as defined in (2.35).
The results for the case q < p < 1 can be found by setting β = 0 into (2.35), which gives

ηc = [(1 − p)αc1]1/(1−p) F ∼ − (1 − 2p)

2(1 − p)
(η − ηc)2
ηc

as η → η+
c (2.42)

for 0 < p < 1/2, while for 1/2 � p < 1, (2.40), (2.41) remain valid.
For p > 1 the similarity solution (2.26) is relevant for small time (see section 3) and

the condition (2.29) is instead pertinent as η → 0+. The required solution of (2.27) remains
(2.31)–(2.33), the large η asymptotics then being given by expanding the parametric solution
(2.32), (2.33) in the limit η̂ ↗ min(0, log θ). For p = q with θ < 1, this yields

F ∼ η log θ + F∞ as η → ∞ (2.43)

where

F∞ ≡ − (p − 1)

β1/(p−1)pp/(p−1)

{∫ 0

−∞

eu/p du

[(1 − eu)(1 − θ eu)]1/p

}p/(p−1)

(2.44)
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whilst for p = q with θ > 1 we have

F → F∞ ≡ − (p − 1)

pp/(p−1)

{∫ 0

−∞

eu/p du

[β(1 − eu)(θ − eu)]1/p

}p/(p−1)

as η → ∞. (2.45)

By setting β = 0, this yields the simpler result for p > q that

F → F∞ ≡ − (p − 1)πp/(p−1) cosecp/(p−1)(π/p)

pp/(p−1)(αc1)1/(p−1)
as η → ∞. (2.46)

For p = q with θ = 1 we have

1 < p < 2 F ∼ − η2−p

(2 − p)2β as η → ∞ (2.47)

p = 2 F ∼ − 1

4β
log2 η as η → ∞ (2.48)

p > 2 F ∼ F∞ ≡ − 2−2/(p−1)(p − 1)

πp/2(p−1)pp/(p−1)

(
$

(
1

p

)
$

(
1

2
− 1

p

))p/(p−1)

as η → ∞. (2.49)

2.3.3. Similarity solution for the case p < q. Simply setting α = 0 in (2.39) does not yield
the correct solution for F(η) in this case of p < q < 1 (cf the far-field analysis of section 2.4).
Instead, using (2.2) we substitute

w(r, t) = −(q − p)(r log r − r) + r log θ + t1/(1−q)F (η) η = r/t1/(1−q) (2.50)

into (2.24), the first two terms representing the leading-order equilibrium solution (see (2.2)).
This similarity solution is relevant for q < 1 as r → ∞ (see section 4) and leads to an ordinary
differential equation for F(η)

1

(1 − q)(F − ηF ′) = βηq(e−F ′ − 1). (2.51)

This equation is of the same form as (2.28) (the equivalence transform of appendix B of [7]
shows that this is not a coincidence), so the required results can be deduced immediately from
(2.29), (2.31), (2.32), (2.35) and (2.42). The relevant solution has F → −∞ as η → ∞; in
fact, in this limit

F ∼ −(1 − q)(η log η − η) + η logβ (2.52)

as η → ∞. The Legendre transform enables a parametric solution of (2.51) to be found in the
form

F̂ (η̂) = −(1 − q)qq/(1−q)
/{∫ η̂

−∞

eu/q du

[β(1 − eu)]1/q

}q/(1−q)
(2.53)

η = q1/(1−q)eη̂/q
/

[β(1 − eη̂)]1/q

{∫ η̂

−∞

eu/q du

[β(1 − eu)]1/q

}1/(1−q)
(2.54)

together with F = ηη̂ − F̂ (η̂). Thus we have ηc = [(1 − q)β]1/(1−q), where F(ηc) = 0 and

F ∼ − (1 − 2q)

2(1 − q)
(η − ηc)

2

ηc
as η → η+

c (2.55)

for 0 < q < 1/2, F = O((η − ηc)
1/(1−q)) as η → η+

c when 1/2 < q < 1, and
F = O((η − ηc)

2/ log(η − ηc)) when q = 1/2. For q > 1 the similarity solution (2.50) is
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relevant for small time and the condition (2.52) is instead pertinent as η → 0+. The required
solution of (2.51) remains (2.53), (2.54), the large η asymptotics then being given by expanding
the parametric solution (2.53), (2.54) in the limit η̂ → 0−. This yields

F ∼ F∞ ≡ −π
q/(q−1)(q − 1) cosecq/(q−1)(π/q)

qq/(q−1)β1/(q−1)
as η → ∞. (2.56)

2.3.4. The case q � p = 1. Here w takes the form w ∼ rW(t) as r → ∞ for all t with

Ẇ = αc1(e−W − 1) + β(eW − 1) (2.57)

for p = q = 1 and

Ẇ = αc1(e−W − 1) (2.58)

for p = 1 > q. Since we requireW → −∞ as t → 0+, equation (2.57) has the solution

eW = θ
(
1 − e−β(1−θ)t) /(1 − θe−β(1−θ)t) θ �= 1 (2.59)

eW = βt/(1 + βt) θ = 1 (2.60)

while for (2.58)

eW = 1 − e−αc1t . (2.61)

2.3.5. The case p < q = 1. Simply setting α = 0 in (2.59) also does not yield a relevant
solution in this case; instead, motivated by the form of the equilibrium solution (1.6) for large
r, we set

w(r, t) ∼ −(1 − p)(r log r − r) + rW(t) as r → ∞. (2.62)

Inserting this into (2.24), we find the modified leading-order balance

Ẇ = β(θ e−W − 1). (2.63)

Upon imposing the initial dataW(t) → −∞ as t → 0+, we obtain the solution

W(t) = log θ + log(1 − e−βt ). (2.64)

2.4. Far-field behaviour

2.4.1. The case p = q. We are now in a position to outline the behaviour as r → ∞. It
follows from (2.24) that, for p = q, cr is rapidly decaying as r → ∞ for p < 1, with (provided
the initial data decay sufficiently rapidly, which we assume to be the case throughout; cf
appendix A of [7])

w = −(1 − p)(r log r − r) + log(αc1t)r +O(1) as r → ∞ for p < 0

(2.65)

w ∼ −(1 − p)(r log r − r) + log(αc1t)r − (αc1 + β)

(p + 1)
trp as r → ∞ for 0 < p < 1.

(2.66)

For p = 1, the result is as given in section 2.3.4, with

w ∼ rW(t) as r → ∞ for p = 1 (2.67)
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whereW(t) is given by (2.59), (2.60), so that

W ∼ log(αc1t) as t → 0 (2.68)

θ < 1 W ∼ log θ − (1 − θ)e−β(1−θ)t as t → ∞
θ = 1 W ∼ −1/βt as t → ∞
θ > 1 W ∼ −(θ − 1) e−β(θ−1)t/θ as t → ∞.

(2.69)

For p > 1, θ �= 1 and for p > 2, θ = 1 the far-field balance is quasi-steady, with

θ < 1 cr ∼ A(t)

rp
θr as r → ∞ p > 1

(2.70)
θ > 1 cr ∼ J∞(t)

β(θ − 1)rp
as r → ∞ p > 1

where A, J∞ are positive for t > 0 and are determined as part of the solution; for θ � 1, we
have J∞ = 0 but for θ > 1 there is a finite flux of particles (and an infinite flux of mass) to
infinity. Finally

θ = 1 w ∼ − r2−p

(2 − p)2βt
as r → ∞ 1 < p < 2

θ = 1 w ∼ − log2 r

4βt
as r → ∞ p = 2

θ = 1 cr ∼ A(t)

rp
as r → ∞ p > 2

(2.71)

the first two of which agree with the large-η limits of the similarity solutions in (2.47), (2.48),
and with the second of (2.69) being a special case of the first of (2.71).

2.4.2. The case p > q. The relevant expressions are identical to those above, except that β
is replaced by zero in (2.66),W(t) in (2.67) is given by (2.64), with (2.69) replaced by

W ∼ −e−αc1 t as t → ∞ (2.72)

(corresponding to β → 0, θ → ∞ in (2.69)), and (2.70) is similarly replaced by

cr ∼ J∞(t)
αc1rp

as r → ∞ p > 1. (2.73)

2.4.3. The case p < q. For q < 1, the calculation equivalent to that which leads to (2.65),
(2.66) implies

w = −(1 − p)(r log r − r) + log(αc1t)r +O(1) as r → ∞ for q < 0

(2.74)

w ∼ −(1 − p)(r log r − r) + log(αc1t)r − β

(q + 1)
trq as r → ∞ for 0 < q < 1

(2.75)

so even though p is less than q, the aggregation terms dominate the far-field behaviour (this
is unsurprising, since aggregation effects are evidently solely responsible for the presence of
large clusters). For q = 1 the analysis of section 2.3.5 pertains, with (2.68) holding and with

W ∼ log θ − e−βt as t → ∞. (2.76)

Finally, for q > 1 the far-field behaviour of (2.24) is governed by the leading order balance

αrpc1 exp

(
−∂w
∂r

)
− βrq = 0 (2.77)
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so that

w ∼ −(q − p)(r log r − r) + r log θ + w∞(t) as r → ∞ (2.78)

for somew∞(t) such thatw∞(0) = −∞; this is again consistent with the equilibrium solution

cr = c1θ
r−1

rp(r!)q−p
. (2.79)

2.5. Summary

In this section we have defined the equilibrium and steady-state solutions using the partition
function and solved exactly the case p = 1 withβ= 0. For general values of p,q, however, there
are no such exact solutions and we have used asymptotic methods to analyse the behaviour of
the concentrations cr (t) at large r. For max{p, q} < 1, we have identified a power law in t
and a critical value of η, namely ηc, which will subsequently prove to determine the position
of a wavefront at large values of r and t. This wavefront is located at

r = s(t) = ηct
1/(1−max{p,q}). (2.80)

However, when max{p, q} = 1, the WKBJ analysis yields a different decay of the
concentrations with increasing size. This behaviour is confirmed by the exact solution available
for p = 1, β = 0 (compare equations (2.17) and (2.61)).

3. Small-time behaviour

A small-time analysis is extremely instructive, particularly in clarifying the behaviour as
r → ∞. For definiteness we adopt initial data cr(0) = 0 for r � 2; for small-time we then
have cr � cr−1 for r = O(1), so that

ċr ∼ α(r − 1)pc1cr−1 (3.1)

and hence

cr ∼ c1((r − 1)!)p−1(αc1t)
r−1 as t → 0+. (3.2)

For p � 1 this solution decays in a manner consistent with that implied by (2.65), (2.68),
(2.74), (2.75) as r → ∞, t → 0, and for q � 1 this representation is then uniform in r
for small t. However, for q > max(p, 1) fragmentation terms contribute at leading order for
sufficiently large r, namely r = O

(
t−1/(q−1)

)
. This can be described via a balance

∂w

∂t
∼ αrpc1 exp

(
−∂w
∂r

)
− βrq (3.3)

in (2.24); using the solution (2.50) described in section 2.3.3 to give the small-time behaviour
of w we have that

w∞(t) ∼ F∞t−1/(q−1) as t → 0 (3.4)

where F∞ is given by (2.56). Moreover, we have

F ∼ (q − 1)(η log η − η) + η logβ − βηq/(q + 1) as η → 0. (3.5)

If p> 1, the solution (3.2) blows up rapidly as r → ∞ and the behaviour in this case is also
not described by (3.2) for sufficiently large r. Thus for p � q with p > 1 a non-uniformity
occurs at r = O

(
t−1/(p−1)

)
and the leading order solution for w is described by the similarity
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Figure 1. On the left, a diagram of the (p, q) parameter space showing the regions of validity
for cases A and F. Cases E, S and B are relevant only when p = q, where θ is also relevant for
classifying the types of behaviour observed; this is illustrated on the right.

solution of section 2.3.2, whereby (2.29) matches with (3.2) as η → 0 and the behaviour
(2.45)–(2.46) as η → ∞ implies that

log J∞ ∼ F∞t−1/(p−1) as t → 0 (3.6)

in the second of (2.70) ( p = q, θ > 1) and in (2.73) (p> q) where the (negative) constantF∞ is
given by (2.45) and (2.46), respectively. Hence the flux of particles to infinity is exponentially
small for small t. For p = q, θ < 1 we have (2.43) in the far field, consistent with the first of
(2.70) with

logA ∼ F∞t−1/(p−1) as t → 0 (3.7)

where F∞ is as given by (2.44). For θ = 1, p > 2 we also have (3.7) in the third of (2.71),
with F∞ as given in (2.49).

4. Large-time behaviour

4.1. Formulation

We now derive the large-time asymptotics for a constant monomer Becker–Döring system in
which the rate coefficients vary in a power-law fashion. Initially, we shall study the special
case in which aggregation and fragmentation terms have the same exponent. We thus take
ar = αrp and br = βrp so that Jr = αc1r

pcr−β(r+1)pcr+1. The parameter θ = αc1/β, used
extensively in [7], remains the crucial quantity in analysing the kinetics of the corresponding
system

ċr = αc1(r − 1)pcr−1 − βrpcr − αc1r
pcr + β(r + 1)pcr+1 r � 2 (4.1)

where c1 is a prescribed constant. This system has the equilibrium solution (2.3), so from
(1.4) we have density

� = (c1/θ)polylog(p − 1, θ) (4.2)

for θ < 1, in which case (2.3) describes the behaviour as r → ∞. The polylog function is
defined by

polylog(k, z) =
∞∑
n=1

zn

nk
(4.3)
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which has a singularity at z = 1; if p > 2 then � is finite for θ = 1. A system with constant
density � and p < 1 also evolves to (2.3), the monomer concentration at equilibrium being
given by (4.2), whereby θ = αc1/β necessarily satisfies θ < 1. For cases with θ > 1, the
system evolves to a steady-state solution (2.7), since in these cases the steady state has faster
decay at large r than the equilibrium solution. The case θ = 1 (case B) is more complex
and so we consider it last. In case B, the system tends to the equilibrium solution (2.3);
however, since it is possible for p to be negative, this solution could be divergent in the limit
r → ∞. Case B divides the (θ , p) plane in two distinct regions; in the critical case θ = 1
the equilibrium solution (2.3) and the steady-state solution (2.7) are identical and the system
tends to the equilibrium (2.3) for θ < 1 (case E) and to a steady-state (2.7) for θ > 1 (case S).
The region in parameter space where each case is relevant is illustrated in figure 1. On the
left is the (p, q) parameter space outlining the domains of cases A and F; on the right the
(p, θ ) plane is given for the case p = q illustrating cases E, S and B. Finally in this section,
we generalize the results to the cases where fragmentation dominates aggregation for large r
(i.e. where p< q in (1.1)) and the cases where aggregation dominates fragmentation; the form
of the solution in this last case differs markedly from that which results from the constant
mass formulation of the Becker–Döring equations where conservation of mass results in the
monomer concentration decreasing to zero in the large time limit.

4.2. Case E: θ < 1

4.2.1. A continuum limit. Since we expect the system to approach the equilibrium solution
cr = θr−1/rp as r → ∞ with r = O(1), we write cr(t) = θr−1c1ψ(r, t)/r

p . We aim to
provide a full description of the large-time behaviour when the system is started from initial
conditions which are non-zero only for some finite range of r (or, more generally, which
decay sufficiently rapidly as r → ∞) with boundary data c1(t) ≡ 1. The large-time behaviour
is similar to that discussed in [7], with inner solution

cr(t) ∼ θr−1c1

rp
ψ(r, t) ∼ 1 as t → ∞ with r = O(1) (4.4)

and with an outer region in whichψ varies slowly, so a naive continuum limit of (1.2), namely

∂ψ

∂t
= −β(1 − θ)rp

∂ψ

∂r
(4.5)

provides an appropriate description of the leading order behaviour for r � 1. In view of (4.4),
this hyperbolic equation implies

ψ(r, t) ∼ H(s(t)− r) as t → ∞ r = O(s) (4.6)

where H is the Heaviside step function and

ṡ = β(1 − θ)sp (4.7)

which is a characteristic projection of (4.5). The nature of the required solution to (4.7)
depends on the value of p, and can be split into five cases: (i) p < 1/2, (ii) p = 1/2,
(iii) 1/2 < p < 1, (iv) p = 1 and (v) p > 1; (4.7) will in fact prove to be valid only in cases
(i)–(iii). We shall give results for all five cases in turn, together with the details of the interior
layer around s(t) over which the discontinuity in (4.5) is smoothed. To describe this, we shall
(in the usual way) need the second term in the continuum limit r → ∞, whereby

∂ψ

∂t
∼ −β(1 − θ)rp

∂ψ

∂r
+

1

2
β(1 + θ)rp

∂2ψ

∂r2
. (4.8)
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Writing r = s(t) + z, where s is given by (4.7) we obtain a second continuum limit, namely

∂ψ

∂t
∼ −pβ(1 − θ)sp−1z

∂ψ

∂z
+

1

2
β(1 + θ)sp

∂2ψ

∂z2
(4.9)

in which the two terms on the right-hand side are in balance if z = O(
√
s).

4.2.2. Case E(i): θ < 1, p < 1
2 . In this case the relevant solution of (4.7) is

s(t) = (β(1 − θ)(1 − p)t)1/(1−p) (4.10)

equivalent to (2.80), (2.34), which shows how material is advected to arbitrarily large r-values
at an ever-increasing speed. Since s increases monotonically with t, and s → ∞ as r → ∞,
we may use s as an internal time variable, so that (4.9) may be rewritten in the form

∂ψ

∂s
= 1

2

(1 + θ)

(1 − θ)

∂2ψ

∂z2
− pz

s

∂ψ

∂z
(4.11)

the required solution to which is

ψ ∼ 1

2
erfc

(√
(1 − θ)(1 − 2p)√

2(1 + θ)

z√
s

)
for z = O(

√
s). (4.12)

In terms of the original variables the transition layer is thus described by

cr(t) ∼ θr−1c1

2rp
erfc

(√
(1 − θ)(1 − 2p)√

2(1 + θ)

(r − s(t))√
s(t)

)
as t → ∞ with r − s(t) = O

(
t1/2(1−p)) . (4.13)

In the outer region r/s > 1 the solution is exponentially small and can be described by the
WKBJ analysis of section 2.3, thereby giving the transition to the far-field behaviour (2.65),
(2.66). Indeed, the factor θr in (4.13) provides the required matching with (2.36).

4.2.3. Case E(ii): θ < 1, p = 1
2 . In this case (4.10) still gives the position of the front

(namely s(t) = β2(1 − θ)2t2/4), but (4.12) evidently does not determine the shape of the
wavefront, the width-scaling z = O(

√
s) being inappropriate. Introducing the new variables

τ = log s ζ = z/
√
s (4.14)

(4.11) becomes

∂ψ

∂τ
= 1

2

(
1 + θ

1 − θ
)
∂2ψ

∂ζ 2
+

(
p − 1

2

)
ζ
∂ψ

∂ζ
(4.15)

a representation which emphasizes the special status of both θ = 1 and p = 1/2; hence for
p = 1/2

ψ ∼ 1

2
erfc

(√
(1 − θ)
2(1 + θ)

ζ√
τ

)
. (4.16)

In our original variables the wavefront is thus given by

cr(t) ∼ θr−1c1

2
√
r

erfc

(
r − 1

4β
2(1 − θ)2t2

β
√
(1 − θ2)t log1/2 t

)

as t → ∞ with r − 1

4
β2(1 − θ)2t2 = O(t log1/2 t). (4.17)

The front is thus somewhat thicker than might be expected from the scaling rule for case E(i)
(p < 1/2); one can think of the material being advected to large aggregation numbers so fast
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that diffusion is only just able to mould the wavefront into the characteristic erfc shape. The
WKBJ analysis again provides the exponentially small solution in r/s > 1, the above solution
matching smoothly into the WKBJ solution (2.37), with the logarithmic dependence on η in
(2.37) corresponding to that on t in (4.17).

4.2.4. Case E(iii): θ < 1, 1
2 < p < 1. With increasing values of p, the front moves

faster, still obeying (4.10), but now the ‘diffusive’ processes are so weak that the wavefront
does not adjust to a self-similar shape. In the limit s → ∞, the advective term in (4.11)
dominates the diffusive part, its time dependence being of the form

ψ ∼ ,(z/sp) as t → ∞ (4.18)

where,(ξ) → 1 as ξ → −∞ and,(ξ) → 0 as ξ → +∞, but, is otherwise arbitrary (being
dependent on the initial data). The manner in which , decays exponentially as ξ → +∞
(whereby −log, grows as ξ1/(1−p)) follows by matching into the (η − ηc)

1/(1−p) correction
term in (2.38).

4.2.5. Case E(iv): θ < 1, p = 1. Here we have (2.67) with the first of (2.69) in the far-field,
which matches directly with (4.4).

4.2.6. Case E(v): θ < 1, p > 1. In this case the far-field behaviour is given by the first of
(2.70) and (4.4) is uniformly valid in r as t → ∞, with zero flux in the large-r limit, and in
(2.70) we have A → c1/θ as t → ∞ (by matching with (4.4)).

4.3. Case S: θ > 1

4.3.1. Preamble. We have already noted the form of the steady-state solution (2.7). As in
case E described above, we claim that at large times a front forms and propagates through
r-space; as t → ∞ the concentration variables approach the steady-state solution (2.7) behind
the front (r/s(t) < 1), while cr is exponentially small ahead of the front (r/s(t) > 1). Our
aim is to find the position of the front, and its shape.

We use a similar procedure as for case E, whereby, in view of (2.7), we write
cr = c1ψ(r, t)/r

p. The inner solution is thus

cr(t) ∼ c1

rp
ψ(r, t) ∼ 1 as t → ∞ with r = O(1) (4.19)

and the outer region in which ψ drops slowly from unity to zero is described (in the first
instance) by

∂ψ

∂t
= −β(θ − 1)rp

∂ψ

∂r
(4.20)

a continuum limit of (1.2). In view of the boundary conditionsψ → 0 as r → ∞ and ψ → 1
when r = O(1) (as given in (4.19)) the solution can be described by

ψ ∼ H(s(t)− r) as t → ∞ r = O(s) (4.21)

where r = s(t) is the leading order position of the interface and is determined by
ṡ = β(θ − 1)sp. Once s(t) has been found, higher order terms from the continuum
approximation

∂ψ

∂t
∼ −β(θ − 1)rp

∂ψ

∂r
+

1

2
β(θ + 1)rp

∂2ψ

∂r2
(4.22)
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need to be considered to find the shape of the interface. Writing r = s(t) + z, we obtain

∂ψ

∂t
∼ −pβ(θ − 1)sp−1z

∂ψ

∂z
+

1

2
β(θ + 1)sp

∂2ψ

∂z2
. (4.23)

4.3.2. Case S(i): θ > 1, p < 1
2 . We start by solving ṡ = β(θ−1)sp to find, as the large-time

solution, that (cf (2.80) and (2.35))

s(t) = (β(θ − 1)(1 − p)t)1/(1−p) (4.24)

which implies that material is advected to large r-values at a continually increasing speed.
Equation (4.23) has the similarity solution

ψ = 1

2
erfc

(√
(1 − 2p)(θ − 1)

2(1 + θ)

z√
s

)
(4.25)

which yields

cr(t) ∼ 1

2rp
erfc

(√
(1 − 2p)(θ − 1)

2(1 + θ)

(r − s(t))√
s(t)

)

as t → ∞ with r − s(t) = O
(
t1/2(1−p)) . (4.26)

In the outer region r/s(t) > 1 the solution is exponentially small and can be described by the
WKBJ analysis of section 2.3, (4.26) matching in the r/s(t) > 1 region with (2.39), which
provides the required far-field behaviour (2.65), (2.66). We note that the flux satisfies

Jr(t) ∼ c1(αc1 − β)ψ(r, t) (4.27)

so (4.25) shows how Jr drops for large r from c1(αc1 − β) (as in (2.6)) to zero, as required by
the far-field behaviour; similar comments apply in the next two subsections.

4.3.3. Case S(ii): θ > 1, p = 1
2 . Equation (4.24) gives the position of the wavefront in

this parameter regime, as well as in S(i), so here s(t) = 1
4β

2(θ − 1)2t2. As in case E(ii), the
substitutions τ = log s, ζ = z/

√
s again yield a diffusion equation for ψ(ζ, τ ) though with a

modified diffusion constant, namely (θ − 1)/2(θ + 1); this has solution (4.16) where (θ − 1)
replaces the factor (1 − θ). Thus the shape of the wavefront in our original variables is

cr(t) ∼ 1

2
√
r

erfc

(
r − 1

4β
2(θ − 1)2t2

β
√
θ2 − 1 t log1/2 t

)

as t → ∞ with r − 1
4β

2(θ − 1)2t2 = O(t log1/2 t). (4.28)

As with case E(ii), the front is somewhat thicker than expected from the solution for case
S(i), with diffusion only just able to mould the wavefront into the erfc shape. The far-field
solution in r/s(t) > 1 can again be determined by the WKBJ solution of section 2.3.2, the
above solution must match smoothly into the WKBJ solution (2.40) due to the existence of
the equivalence transform and the corresponding matching of case E(ii).

4.3.4. Case S(iii): θ > 1, 1
2 < p < 1. As in case E(iii), the large-time asymptotics depend

on the initial conditions, the time dependence being of the form

, = ,(z/sp) (4.29)

where ,(ξ) → 1 as ξ → −∞ and , → 0 as ξ → +∞ but otherwise depends on the
initial conditions since the advective part of (4.22) dominates the diffusive part. The quantity
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s = s(t) is as given in (4.24) consistent with the balance (4.20). The flux thus drops from
c1(αc1 − β) to zero over exponentially large cluster sizes r = O

(
eβ(θ−1)t

)
. The manner in

which , decays exponentially as ξ → +∞, whereby −log, grows as ξ1/(1−p), follows by
matching into (2.41).

4.3.5. Case S(iv): θ > 1, p = 1. Here the far-field is given by (2.67) with the last of (2.69),
which matches with (4.19) and implies exponential decay in cr as r → ∞, albeit at a rate
which decays exponentially with t, consistent with the balance (4.20). The flux thus drops
from c1(αc1 − β) to zero over exponentially large cluster sizes r = O

(
eβ(θ−1)t

)
.

4.3.6. Case S(v): θ > 1, p > 1. The far-field from (2.70) applies, implying that (4.19) is
uniformly valid in r as t → ∞ with a nonzero flux to infinity,

J∞ ∼ βc1(θ − 1) as t → ∞. (4.30)

4.4. Case B: θ = 1

4.4.1. Preliminaries. In this case αc1 = β and a simple rescaling of time removes α and β
from the model, leaving

ċr = (r − 1)pcr−1 − 2rpcr + (r + 1)pcr+1 r � 2 (4.31)

whose large-time behaviour for r = O(1) is convergence to the equilibrium solution
cr = 1/rp.

We substitute cr (t) = ψ(r, t)/rp with ψ → 0 as r → ∞. In the large t limit, (4.31) can
be approximated by the continuum formulation

∂ψ

∂t
= rp

∂2ψ

∂r2
. (4.32)

4.4.2. Case B(i): θ = 1, p < 2. For p < 2 we seek a similarity solution

cr(t) ∼ 1

rp
ϒ(η) η = r

t1/(2−p) as t → ∞ r = O
(
t1/(2−p)) (4.33)

so ψ ∼ ϒ(η), giving

−ηϒ ′(η) = (2 − p)ηpϒ ′′(η). (4.34)

When subject to the boundary conditions ϒ(0) = 1 and ϒ(η) → 0 as η → ∞ this implies

ϒ(η) =
∫∞
η

exp(−η̃2−p/(2 − p)2)dη̃∫∞
0 exp(−η̃2−p/(2 − p)2)dη̃ = 1

$(p)
$

(
p,

η2−p

(2 − p)2

)
(4.35)

where$(p, z) is the incomplete Gamma function. This is consistent with the far-field analysis
(2.71).

4.4.3. Case B(ii): θ = 1, p = 2. It is clear from the definition of η in (4.33) that the
similarity approach used in the previous subsection will fail when p = 2. Instead, we note that
the transformationR = log r transforms (4.32) into the linear constant coefficient equation

∂ψ

∂t
= ∂2ψ

∂R2
− ∂ψ

∂R
(4.36)

with large-time solution

ψ = 1

2
erfc

(
R − t
2
√
t

)
. (4.37)
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Thus we obtain the leading order large-time solution

cr(t) ∼ 1

2r2
erfc

(
log r − t

2
√
t

)
as t → ∞ with log r − t = O(

√
t). (4.38)

This solution is consistent with the far-field analysis given in (2.71).

4.4.4. Case B(iii): θ = 1, p > 2. For p> 2, (4.19) is consistent with the far-field behaviour
described in the last of (2.71) and is uniform in r as t → ∞, with A(t) → c1 as t → ∞.

4.5. Summary

The equilibrium solution is approached when θ � 1 and a steady-state solution when θ > 1.
The approach to equilibrium or steady-state for θ �= 1, p � 1 occurs by a diffusive wavefront
advecting material to large r as time increases, its position being determined by s(t). For θ =
1 the ‘advection’ process, present for θ < 1 due to the aggregation coefficient arc1 being larger
than the fragmentation one br, is absent and for p < 2 ‘diffusion’ alone is responsible for the
convergence to equilibrium.

Case E concerns θ < 1 and when p < 1 the system tends to its equilibrium configuration
via a wave travelling into larger r-regions. Only when p � 1/2 does the wavefront adjust
to the characteristic erfc shape; when p > 1/2 advection dominates diffusion to the extent
that the system always retains some knowledge of its initial conditions. For p > 1 uniform
convergence to equilibrium is observed. The second case considered was θ > 1, where the
system approaches the steady-state solution, uniformly for p> 1 but through wave propagation
to infinity for p < 1. In the special case θ = 1, the forward and backward rate coefficients
are exactly balanced and so advective forces are, as already noted, significantly weaker; this
is manifested in the absence of a wavefront when p < 2.

The reason for the strong similarities between cases E and S can be clarified by means of
the equivalence transform

âr = 1 +Kdr+1

1 +Kdr
ar b̂r = 1 +Kdr−1

1 +Kdr
br (4.39)

with

d1 = 0 dr =
r−1∑
k=1

1

akQkc
k+1
1

= 1

bc1θr−1

(
θr − 1

θ − 1

)
(4.40)

noted in appendix B of [7], which maps case S to case E (and vice versa) if we set
K = −1/d∞ = −bc1(θ − 1); this yields âr = α̂rp, α̂ = (a/θ), b̂r = β̂rp, β̂ = βθ .
The coefficients âr , b̂r here refer to an associated Becker–Döring system

˙̂cr = Ĵ r−1 − Ĵ r Ĵ r = âr ĉ1ĉr − b̂r+1ĉr+1 (4.41)

for ĉr = cr(1 +Kdr) (so that ĉ1 = c1) whereby θ̂ = α̂ĉ1/β̂ = 1/θ .

4.6. Case F: fragmentation dominated (p < q)

We now turn to cases where the fragmentation and coagulation terms have different exponents
(p �= q in equation (1.1)). We first study the case q > p in which fragmentation dominates
coagulation at large cluster sizes, and the cluster concentrations decay with increasing size,
leading to a well-behaved cluster-size distribution at all times. The system is governed by

ċr = α(r − 1)pc1cr−1 − βrqcr − αrpc1cr + β(r + 1)qcr+1 r � 2 ċ1 = 0. (4.42)
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Since q > p, the equilibrium solution cr = Qrc
r
1 decays with increasing r faster than any

exponential. The substitution cr = Qrc
r
1ψr , with Qr given by (2.1), yields

ψ̇r = βrq
(
ψr−1 − ψr − θψr

rq−p
+
θψr+1

rq−p

)
. (4.43)

At large times, and for large r, it is admissible to take the continuum limit, which at leading
order simplifies (4.43) to, in the first instance,

∂ψ

∂t
= −βrq ∂ψ

∂r
. (4.44)

Equation (4.44) can also be derived from (4.5) by taking the limit θ → 0 and replacing p by q.
It supports a wave which travels from small to large values of r at a rate determined, to leading
order, by ṡ ∼ βsq . For q < 1, this implies the leading order behaviour is given by

s(t) ∼ (β(1 − q)t)1/(1−q) as t → ∞. (4.45)

Including higher-order correction terms yields

∂ψ

∂t
∼ −βrq ∂ψ

∂r
+

1

2
βrq

∂2ψ

∂r2
+ βθrp

∂ψ

∂r
. (4.46)

It is now appropriate to introduce z = r − s(t), where s(t) is defined so that all the first-
order derivative terms on the right-hand side of (4.46) (the convective terms) are eliminated at
leading order, which requires that we define s by

ṡ = βsq − βθsp. (4.47)

This can be solved asymptotically as t → ∞, by taking the leading-order solution (4.45) and
calculating the first correction term, to give

s(t) ∼ (β(1 − q)t)1/(1−q) − θ

p − 2q + 1
(β(1 − q)t)1+p/(1−q). (4.48)

However, if p + 1 < 2q a term λtq/(1−q) where λ is an arbitrary constant whose value depends
on the initial data (this term corresponds to the invariance of (4.47) under time translations),
intrudes before the second term given in (4.48) (for p + 1 = 2q, the correction term has
an additional log t factor). For q � 1/2 the remaining terms from (4.46) imply that the
leading-order balance is between the terms

∂ψ

∂t
∼ βsq

2

∂2ψ

∂z2
− βqz

s1−q
∂ψ

∂z
(4.49)

or some subset thereof, and this enables the shape of the wave to be determined in some cases.
Results for the system fall into five categories, depending on the size of q, with a similar
classification to cases E and S.

4.6.1. Case F(i): p < q < 1/2. For q < 1/2 the front’s position s(t) is governed by (4.47)
and its shape is determined by the leading order terms from (4.49), which are

∂ψ

∂t
∼ 1

2
βsq

∂2ψ

∂z2
(4.50)

leading to

cr(t) ∼ θr−1

2rp(r!)q−p
erfc

(√
1 − 2q

2

r − s(t)√
s(t)

)

as t → ∞ with r − s(t) = O(
√
s(t)) (4.51)

with the WKBJ solution (2.55) holding in r/s(t) > 1, giving far-field behaviour (2.74), (2.75).
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4.6.2. Case F(ii): p < q = 1/2. For q = 1/2, the position of the wavefront is given by
s(t) ∼ β2t2/4. The wavefront’s shape is given by

∂ψ

∂t
∼ β

√
s

2

∂2ψ

∂z2
− βz

2
√
s

∂ψ

∂z
(4.52)

which on using the transformation (4.14) yields the solution

cr(t) ∼ θr−1

2rp(r!)1/2−p erfc

(
r − s(t)√

s(t) log1/2 s(t)

)

as t → ∞ with r − s(t) = O(
√
s(t) log1/2 s(t)). (4.53)

4.6.3. Case F(iii): max(p, 1/2) < q < 1. When 1/2 < q < 1, the position of the
wavefront is determined by (4.47). The local behaviour at the wavefront depends on ξ = z/sp

via ψ ∼ ,(ξ), where ,(ξ) is dependent on the initial conditions and satisfies , → 0 as
ξ → ∞ and , → 1 as ξ → −∞.

4.6.4. Case F(iv): p < q = 1. In the two remaining cases, the description via a wavefront
located about r = s with s given by (4.47) is no longer appropriate. In the current borderline
case, we have (2.62), (2.76) in the far field which matches with the equilibrium solution (2.79)
which describes the large time behaviour essentially uniformly in r.

4.6.5. Case F(v): q > max(q, 1). For q > 1, (2.78) describes the far-field behaviour, and
convergence to the steady-state solution is essentially uniform in r as t → ∞.

4.7. Case A: aggregation dominated (p > q)

4.7.1. Formulation. In this case, the system converges to the steady-state solution (2.9) for
large time. The behaviour is very similar to case S (p = q) in the limit θ → ∞, corresponding
to taking β → 0 with βθ = αc1 fixed andO(1). However, in the current case the steady-state
solution (2.9) is a little more complex than that in case S. As before, we factor out the steady
state by writing

cr(t) = Qrc
r
1Jσ(r)ψ(r, t)

with J = βc1

/ ∞∑
k=1

1

θk(k!)p−q and σ(r) =
∞∑
k=r

1

βc1θk(k!)p−q (4.54)

whereby in the inner region r = O(1) we have ψ ∼ 1 as t → ∞ and we have an outer region
where ψ varies slowly in r. For large r

σ(r) ∼ 1

βc1θr(r!)p−q

(
1 +

1

θrp−q + · · ·
)

(4.55)

which can be further simplified using Stirling’s formula, while taking the continuum expansion
of the system of ordinary differential equations

ψ̇(r, t) = βrq (ψ(r − 1, t)− ψ(r, t)) + αc1r
p (ψ(r + 1, t)− ψ(r + 1, t))

+
(ψ(r − 1, t)− ψ(r + 1, t))

Qrc
r
1σ(r)

(4.56)

yields

∂ψ

∂t
∼ −αc1r

p ∂ψ

∂r
+ (2αc1 − β)rq ∂ψ

∂r
+
αc1r

p

2

∂2ψ

∂r2
. (4.57)
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At large r, the leading-order balance is

∂ψ

∂t
= −αc1r

p ∂ψ

∂r
(4.58)

which determines the position (r = s(t)) of the wavefront, the leading-order solution of (4.58)
being ψ = H(s(t)− r), where s(t) is determined by

ṡ ∼ αc1s
p. (4.59)

To determine the solution for ψ(r, t) at higher order we substitute z = r − s(t) in (4.57) and,
as before, eliminate the correction terms at leading order by defining s(t) through

ṡ = αc1s
p − (2αc1 − β)sq (4.60)

the dominant balance being

∂ψ

∂t
∼ αc1s

p

2

∂2ψ

∂z2
− αc1z

s1−p
∂ψ

∂z
(4.61)

or a subset thereof. For p � 1/2 (4.61) determines the shape of the wavefront as described
below. The solution to (4.60) is given for large time by

s(t) ∼ (αc1(1 − p)t)1/(1−p) +
(1/θ − 2)

(q − 2p + 1)
(αc1(1 − p)t)1+q/(1−p) (4.62)

(cf (4.48)). However, if 2p > q + 1 a term of the form λtp/(1−p) where λ depends on the initial
conditions, which corresponds to the invariance of (4.60) under time translations, intrudes
before the second term given in (4.62).

4.7.2. Case A(i): p < 1/2. For p < 1/2, the full balance occurs at leading order in (4.61),
being solved by

ψ ∼ 1

2
erfc

(√
1 − 2pz√

2s(t)

)
(4.63)

thus from (4.54) the solution for large t is

cr ∼ c1

2rp
erfc

(√
1 − 2p(r − s(t))√

2s(t)

)
as t → ∞ with r − s(t) = O(

√
s(t))

(4.64)

where s(t) is given by (4.62). In the far-field (where r/s(t) > 1), the solution is determined
by the WKBJ solution (2.39) with β = 0. Since we have Jr(t) ∼ Jψ(r, t) as r → ∞, (4.63)
shows how the flux through the system drops from J to zero for large r.

4.7.3. Case A(ii): p = 1
2 . In this case, solving (4.60) for the position of the diffusive

wavefront gives s(t) ∼ α2c2
1t

2/4. The shape of the front is clearly not given by (4.64), and
we transform (4.61) by introducing the new variables τ , ζ , as defined by (4.14). Thus around
the front, the solution in the large-time limit takes the form

cr(t) ∼ c1

2
√
r

erfc

(
r − s(t)

2
√
s(t) log1/2 s(t)

)

as t → ∞ with r − s(t) = O(
√
s(t) log1/2 s(t)). (4.65)



1378 J R King and J A D Wattis

4.7.4. Case A(iii): 1
2 < p < 1. As in cases E(iii) and S(iii), the large-time asymptotics

depend on the initial conditions, with the time dependence being of the form

ψ ∼ ,(z/sp) (4.66)

where , is arbitrary (depending on the initial data) subject to ,(ξ) → 1 as ξ → −∞ and
,(ξ) → 0 as ξ → +∞, and where s = s(t) is given by (4.60). The form of decay as ξ → +∞
can be found by matching into the WKBJ solution (2.41). The advective component of (4.57)
in this case dominates the diffusive one, and the details of the initial data are accordingly not
all lost.

4.7.5. Case A(iv): p = 1. Here (2.67) and (2.72) give the far-field behaviour, matching with
the steady-state solution and again implying exponential decay in cr as r → ∞ at a rate which
itself decays exponentially with t.

4.7.6. Case A(v): p > 1. As with case S(v), the far-field (2.73) applies, implying that in
(4.54) ψ → 1 uniformly in r as t → ∞ with a nonzero flux to infinity, which can be found,
using (4.55), to be

J∞(t) → J as t → ∞ (4.67)

where J is as defined in (4.54).

5. Conclusions

Many of the results presented in this paper are applicable to more general forward and backward
rate coefficients satisfying ar ∼ αrp , br ∼ βrq as r → ∞; if (1.1) is valid only for large
r then (2.2) is modified solely by a change in the constant term. For a variety of constant
monomer Becker–Döring systems we have shown which of the equilibrium solution and the
steady-state solution govern the large-time asymptotics, and the manner in which that solution
is approached. Depending on the form of the forward and backward rate parameters in the
problem, this is often by a wavefront which advects matter to larger aggregation numbers,
leaving behind the steady-state or equilibrium solution.

For p > 1 with q < p and p = q > 1 with θ > 1 a phenomenon akin to gelation (see
[4, 5, 8], for example) occurs, whereby there is a finite flux of particles to a particle of infinite
size (the ‘gel’); unlike the conventional case, however, there is an infinite flux of mass, with
new monomers being introduced at an unbounded rate

(
J1 +

∑∞
r=1 Jr

)
in order to maintain

the monomer concentration at a fixed level. Although this may appear unphysical, the results
are highly instructive for the constant mass formulation of the Becker–Döring equations. We
note that for p > 2 only a finite amount of mass is present in particles of finite size, while for
1 < p � 2 there is an infinite amount; in all cases there is only a finite number of particles
of finite size. For the power-law coefficients (1.1) discussed so far, the gel starts to form
instantaneously (cf (3.6)). However, there could in principle be classes of rate coefficient for
which the onset of gelation may be deferred (finite time gelation, cf [4, 5, 8]); this can be the
case if there exists a range of coefficients about the borderline p = 1 for which distinct far-field
behaviour, one with J∞ = 0 and another with J∞ > 0, are both possible. We now investigate
this possibility, considering for brevity the case br ≡ 0. If J∞ > 0 then

cr ∼ J∞(t)
arc1

as r → ∞ (5.1)
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constructing the first correction term (whereby the continuum limit pertains), we find that

cr ∼ J∞
a(r)c1

+
J̇∞
a(r)c2

1

∫ ∞

r

dr ′

a(r ′)
as r → ∞ (5.2)

and this form of the far-field solution is thus self-consistent if the integral in (5.2) converges
so, if

ar ∼ αr logp̂ r as r → ∞ (5.3)

say, for some constant p̂ then we require p̂ > 1. In the case (5.3), the far-field balance (2.24)
reads

∂w

∂t
= αr logp̂ rc1

(
exp

(
−∂w
∂r

)
− 1

)
(5.4)

writing

w = rŵ(r̂, t) r̂ = log r (5.5)

yields

∂ŵ

∂t
= αr̂p̂c1

(
exp

(
−∂ŵ
∂r̂

)
− 1

)
(5.6)

equivalent to the corresponding problem for (1.1) discussed earlier in the paper, with p replaced
by p̂; thus if p̂ < 1 a WKBJ approach determines the far-field behaviour of solutions, showing
them to be non-gelating. Repeated application of transformations of the form (5.5) enables us
to refine iteratively the borderline, below which non-gelating solutions exist, to

ar ∼ αr log r log log r · · · as r → ∞ (5.7)

coinciding exactly with the borderline for the convergence or otherwise of the integral in
(5.2). Since there thus seems to be no overlap between gelating and non-gelating regimes, we
conclude that, unlike certain other coagulation models, deferred gelation is not in fact possible
for (1.2).

We noted earlier ((4.39), (4.40)) that there is an equivalence transform which maps case
S to case E and vice versa. This equivalence transform also yields insight into the relationship
between cases F and A; here the coefficients do not map exactly into each other, but the relevant
large-r forms do—for example, takingK = −1/d∞ maps the coefficients ar = arp, br = brq

with p > q to âr , b̂r which satisfy âr = (α/θ)rq(1 +O(1/r)) and b̂r = βθrp(1 +O(1/r)) as
r → ∞ (note the interchange of p and q). Thus case A maps to case F and vice versa.

We have also illustrated the role of some novel forms of self-similarity holding as t → ∞,
notably in (4.38).

The results of section 4 also allow us to find the asymptotic behaviour of the mass
(� = M1(t)) and total number of clusters,M0(t). In case E, where p = q and θ < 1 we have

M0 → polylog(p, θ) M1 → polylog(p − 1, θ) as t → ∞ (5.8)

since the system converges to the equilibrium solution, whereas for θ > 1 and p = q the system
approaches a steady-state according to

M0 ∼ βc1(θ − 1)t M1 ∼ c1

2 − p(β(θ − 1)(1 − p)t)(2−p)/(1−p) as t → ∞ (5.9)

for p < 1. In the case p = 1 with θ > 1, we have

M0 ∼ βc1(θ − 1)t M1 ∼ c1θ eβ(θ−1)t

θ − 1
as t → ∞. (5.10)
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For p> 1 with θ > 1 a phenomenon akin to gelation occurs, so thatM0 andM1 are thus unable
to grow without bound, but instead

M0 → c1ζ(p) M1 → c1ζ(p − 1) as t → ∞ (5.11)

where ζ(p) is the Riemann zeta function; note that ζ(p − 1) is divergent for p < 2, the mass
in this case being unbounded for all t > 0. The borderline case (‘B’, p = q, θ = 1) yields, for
p < 1,

M0 ∼ t (1−p)/(2−p)
∫ ∞

0
η−pϒ(η) dη M1 ∼ t

∫ ∞

0
η1−pϒ(η) dη as t → ∞ (5.12)

and for 1 < p < 2,

M0 ∼ ζ(p) M1 ∼ t

∫ ∞

0
η1−pϒ(η) dη as t → ∞ (5.13)

where ϒ(η) is the similarity solution defined by (4.35) with η = r/t1/(2−p). The borderline
case for θ = 1 = p = q has been solved exactly, yielding

M0 = G(0, t) = c1(1 + αc1t) M1 = c1(2 eαc1t − 1) (5.14)

from (2.14) and (2.15) respectively; for case B(ii) ( p = 2) we have

M0 → π2

6
M1 ∼ t as t → ∞. (5.15)

For θ = 1 with p > 2, we have uniform convergence (in r) to the equilibrium solution
cr = c1/r

p, for which M0 = c1ζ(p) and M1 = c1ζ(p − 1). Case F (p < q) behaves in a
similar fashion to case E, with both M0 and M1 approaching finite constants as t → ∞, the
values of which depend on the details of the equilibrium solution. In case A ( p > q) with
p< 1 we have

M0 ∼ αc2
1t M1 ∼ c1

2 − p
(αc1(1 − p)t)(2−p)/(1−p) as t → ∞ (5.16)

equivalent to the limit β → 0, θ → ∞ in (5.9).
In a future paper the methodology and results derived here will be applied to the constant

mass formulation of the Becker–Döring system of equations to elucidate, in particular, the form
of the weak convergence in the case of rate coefficients which yield an aggregation-dominated
system.
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